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Abstract
Motivated by recent experimental realization of a Y-shaped artificial Kondo
impurity, we investigated the current correlations in a three-terminal Kondo dot
modelled by the Anderson Hamiltonian. Using the Keldysh nonequilibrium
Green’s function technique, the multiterminal noise power spectrum at zero
frequency is expressed in terms of the retarded (advanced) Green’s function
in the dot, which is valid for small voltages and low temperatures. The retarded
(advanced) Green’s function is determined under the truncation beyond the
Lacroix approximation by the equation of motion approach and thus describes
well the nonequilibrium Kondo physics. Our numerical results, along with
analytical ones in some limit cases, can be tested by present technology.

1. Introduction

Current fluctuations in mesoscopic conductors, originating from the granularity of the carriers
and the thermal disturbance, have been a fruitful field of research [1]. The thermal noise
does not carry extra information because it can be related to the linear conductance via the
fluctuation–dissipation theorem (FDT). The shot noise (due to charge discreteness) is a purely
nonequilibrium property and it can provide information additional to the averaged current. To
study correlations in mesoscopic transport, shot noise is an important tool [2]. For uncorrelated
carriers, shot noise is Poissonian. The Pauli exclusion principle always suppresses shot noise
from the Poisson value. However, when Coulomb interaction is taken into account, shot
noise can be sub-Poissonian or super-Poissonian depending on the details of the systems under
consideration [3–5].

Theoretical and experimental studies on shot noise in strongly correlated electron systems
are scarce, especially when the systems show a Kondo effect [6, 7]. One of the main paradigms
of such systems in mesoscopic physics is the quantum-dot device. Indeed, the electronic
transport through a quantum dot (QD) is highly correlated due to the Kondo effect. QDs offer
new control for studying a continuous range of physically interesting situations because of the
electrical tunability of their parameters. The ability to control the dot–lead couplings and the
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energy levels in the dot by gate voltages allows one to make an investigation of wide scope
from Coulomb-blockade oscillations to the Kondo resonance, from open to closed dots. Here
we only mention Meir and Golub’s [6] study of the shot noise in a two-terminal QD in the
Kondo regime. The authors find that the voltage-scaled shot noise exhibits a nonmonotonic
dependence on voltage with a peak around the Kondo temperature, which is obtained by using
five complementary approaches and should be reliable.

Recently, Leturcq et al [8] performed a first direct realization of a quantum ring connected
to three normal leads. They managed to operate the ring, where effectively a single spin
is localized, in the Kondo regime. This experiment motivated us to investigate the current
cross correlations in a multiterminal Kondo impurity. To our knowledge, up to now there has
been no measurement of cross correlations in a system where the Kondo effect dominates.
Theoretically, the only relevant results are due to Sánchez and López [9] based on the
slave-boson mean-field (SBMF) theory. In this paper, we establish closed formulae for the
multiterminal noise power using the nonequilibrium Green’s function (GF) technique together
with the equation of motion (EOM) approach. The power spectrum is then explicitly related
to the Kondo-enhanced density of states (DOS) which is calculated beyond the usual Lacroix
approximation.

2. Formulation

We consider the transport through a Y-shaped QD using the Anderson impurity model, which
reads

H =
∑

σ

εdσ d†
σ dσ + U

2

∑

σ

n̂dσ n̂dσ +
∑

k,σ,α

εkσαC†
kσαCkσα

+
∑

k,σ,α

(
VkσαC†

kσαdσ + V ∗
kσαd†

σ Ckσα

)
, (1)

where the first two terms describe the interacting QD with the onsite Coulomb repulsion U , the
last term is the tunnelling Hamiltonian, and the third term models the three leads (α = 1, 2, 3),
each with a distribution function fα(ε) = 1/[1 + exp β(ε − Vα)] due to their different applied
voltages Vα.

The current from the α lead to the QD is given by the time evolution of the occupation
number in the α lead

Îα = −e
∂ N̂α(t)

∂ t
= − e

ih̄

∑

k,σ

[
VkσαC†

kσα(t)dσ (t) − V ∗
kσαd†

σ (t)Ckσα(t)
]
. (2)

Depending on the energy properties of the noise detector, both symmetrized and
nonsymmetrized definitions of the noise power spectrum are used in the literature [3, 10]. In
a three-terminal device, the symmetrized shot noise and the nonsymmetrized shot noise are
equivalent at zero frequency, but the corresponding cross correlations are not equivalent. Here
we focus on the zero-frequency noise spectrum and adopt the symmetrized version. We thus
define the correlation function of the current in the α lead and the current in the β lead as

Sαβ(t) ≡ 〈[� Îα(t),� Îβ(0)]+〉 = 〈[ Îα(t), Îβ(0)]+〉 − 2〈 Îα〉〈 Îβ 〉. (3)

Inserting equation (2) into (3) one gets the following result for the current correlation function
after some calculations:

Sαβ(t) = e2
∑

k,σ,k′ ,σ ′
V ∗

kσαVk′σ ′β
[
G>

kσα,k′σ ′β(t)G<
σ ′,σ (−t) + G<

kσα,k′σ ′β(t)G>
σ ′,σ (−t)

]

+ e2
∑

k,σ,k′ ,σ ′
VkσαV ∗

k′σ ′β
[
G>

σ,σ ′(t)G<
k′σ ′β,kσα(−t) + G<

σ,σ ′(t)G>
k′σ ′β,kσα(−t)

]
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− e2
∑

k,σ,k′ ,σ ′
VkσαVk′σ ′β

[
G>

σ,k′σ ′β(t)G<
σ ′,kσα(−t) + G<

σ,k′σ ′β(t)G>
σ ′,kσα(−t)

]

− e2
∑

k,σ,k′ ,σ ′
V ∗

kσαV ∗
k′σ ′β

[
G>

kσα,σ ′ (t)G<
k′σ ′β,σ (−t) + G<

kσα,σ ′(t)G>
k′σ ′β,σ (−t)

]
,

(4)

where G<(>) is the lesser (greater) Green’s function of the Keldysh type [11] corresponding to
the states at the dot and in the leads. In deriving the above equation, we have approximately
expanded the four-operator correlation functions, e.g.
〈
C†

kσα(t)dσ (t)C†
k′σ ′β(0)dσ ′(0)

〉
≈

〈
C†

kσα(t)dσ (t)
〉 〈

C†
k′σ ′β(0)dσ ′(0)

〉

+
〈
C†

kσα(t)dσ ′(0)
〉 〈

dσ (t)C†
k′σ ′β(0)

〉
. (5)

Next, we use the equation of motion approach and Langreth’s rules for analytic
continuation [11] to express Sαβ(t) only by the GFs Gσ at the dot and the bare GFs gkσα in
the leads. The lesser, greater, retarded, and advanced GFs gkσα take the form of free fermions.
After applying a Fourier transform, the noise power spectrum in the zero-frequency limit is
finally obtained as

Sαβ ≡ lim
ω→0

Sαβ(ω) = 8e2

h

∑

σ

	σα	σβ

∫
dε

{
G<

σ (ε)G>
σ (ε) + G<

σ (ε)Ga
σ (ε) − G<

σ (ε)Gr
σ (ε)

+ fα(ε)G<
σ (ε) Gr

σ (ε) − fα(ε)G>
σ (ε)Ga

σ (ε) − fα(ε)Ga
σ (ε)Ga

σ (ε)

+ fβ(ε)G>
σ (ε) Gr

σ (ε) − fβ(ε)G<
σ (ε)Ga

σ (ε) − fβ(ε)Gr
σ (ε)Gr

σ (ε)

+ fα(ε) fβ(ε)Ga
σ (ε)Ga

σ (ε) + fα(ε) fβ(ε)Gr
σ (ε)Gr

σ (ε)

− i

2	σα

δαβ

[
G<

σ (ε) − fα(ε)G<
σ (ε) − fα (ε) G>

σ (ε)
]}

, (6)

where 	σα, defined as 	σα ≡ πρσα|Vkσα|2, is the hybridization width of the virtual bound state.
One can neglect the energy dependence of 	σα in the wide band limit. The density of states
ρσα for conduction electrons in the α lead is taken to be constant when −D < ε < D; D is the
half band width. This equation is our basic formula for the zero-frequency noise power through
a Y-shaped dot. It describes the thermal noise (at equilibrium), cross correlations (α 	= β) and
shot noise (α = β). The decoupling scheme of equation (5) is indispensable to the derivation of
equation (6). Equation (5) is a good approximation based on the following two considerations:
(i) the d-electrons and C-electrons are two different types of electron, having different spatial
configurations and less overlap of their wavefunctions, so that their dynamical correlations
should be small, (ii) as U is very large, the most possible population of the d-level is that with
only one electron because of the strong effective Coulomb repulsion, which in turn reduces the
two-body correlations between d-electrons and C-electrons. A more sophisticated treatment
beyond this approximation is still needed if one wants to take into account the effect of finite
frequencies and properties far from equilibrium [1].

The four GFs, appearing in equation (6), are not independent: they obey Gr − Ga =
G> − G<. However, the lesser and greater ones cannot be directly obtained by their EOMs
without introducing additional assumptions. We assume that their self-energies have the form

>
σ (ε) = −2i

∑

α

	σα

[
1 − fα(ε)

]
Rσ (ε),

<
σ (ε) = 2i

∑

α

	σα fα(ε)Rσ (ε),
(7)

where Rσ (ε) is the renormalization factor due to the Coulomb repulsion U in the dot. With the
help of the Dyson equation for Gr(a) and the Keldysh equation [11] for G>(<), one can readily
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relate Rσ (ε) to the retarded self-energy: Rσ (ε) = − Im r
σ (ε)/	σ , where 	σ ≡ ∑

α 	σα is
the total hybridization width. Obviously, Rσ (ε) = 1 for a noninteracting dot. Equation (7)
has the advantages that (i) it is exact in the limit U → 0, (ii) it allows us to write G>(<) in
a ‘pseudoequilibrium’ form if we introduce a nonequilibrium distribution function fσ0(ε) ≡∑

α 	σα fα(ε)/	σ ,

G<
σ (ε) = − fσ0(ε)

[
Gr

σ (ε) − Ga
σ (ε)

]
,

G>
σ (ε) = [

1 − fσ0(ε)
] [

Gr
σ (ε) − Ga

σ (ε)
]
.

(8)

Substituting equation (8) in (6), a more compact expression for the power spectrum reads, after
a rearrangement,

Sαβ = 8e2

h

∑

σ

	σα	σβ

∫
dε

{
( fσ0 − fα)

(
fσ0 − fβ

) [Gr
σ (ε) − Ga

σ (ε)]2

+ i[Gr
σ (ε) − Ga

σ (ε)]
[

1

2	σ Rσ (ε)

[
fα

(
fβ − 1

) + fβ ( fα − 1)
]

− δαβ

2	σα

[
fα ( fσ0 − 1) + fσ0 ( fα − 1)

]]}
. (9)

In a similar way, the expectation value of equation (2), i.e. the average current, can be cast
in terms of the retarded and advanced GFs,

Iα = 2e

ih

∑

σ

	σα

∫
dε[ fσ0(ε) − fα(ε)][Gr

σ (ε) − Ga
σ (ε)]. (10)

Equation (10) is exact and has already taken into account the current conservation.
The implication of the current conservation in the current cross correlations is that the

cross correlations are negative (positive) due to the Fermi (Bose) statistics of the carriers [1, 2].
Positive correlations can be found when the transport is spin dependent or the leads are
superconductors [12–14]. In the present work, we confine ourself to the spin-independent
transport, i.e. we take Gr

σ (ε) = Gr
σ (ε) = Gr (ε), 	σα = 	σα = 	α , etc. In this case,

equation (9) describes the negative cross correlations well.
To determine the retarded (advanced) GF in the Kondo regime, we prefer the EOM

approach among a few known methods which can be adopted for the nonequilibrium Kondo
problem. The EOM approach takes into account all relevant scattering processes and
even describes the Kondo effect in a quantitative way depending on a proper truncation
approximation [15]. The EOM generates higher-order GFs; a systematic decoupling procedure
of this infinite hierarchy of the high-order GFs is provided by the correlation dynamics [15–17].
The main idea is to employ cluster expansions, which express the high-order GFs in terms of
lower-order GFs and same-order correlated GFs, such as (in the Zubarev notation)

〈〈n̂dσ dσ |d†
σ 〉〉 = ndσ 〈〈dσ |d†

σ 〉〉 + 〈〈n̂dσ dσ |d†
σ 〉〉c, (11)

〈〈d†
σ Ck′σα′ Ckσα |d†

σ 〉〉 = 〈d†
σ Ck′σα′ 〉〈〈Ckσα |d†

σ 〉〉 + 〈〈d†
σ Ck′σα′ Ckσα |d†

σ 〉〉c, (12)

〈〈n̂dσ C†
k′σα′ Ckσαdσ |d†

σ 〉〉 = ndσ 〈〈C†
k′σα′ Ckσαdσ |d†

σ 〉〉c + 〈C†
k′σα′ Ckσα〉〈〈n̂dσ dσ |d†

σ 〉〉c

+ 〈n̂dσ C†
k′σα′ Ckσα〉〈〈dσ |d†

σ 〉〉c + 〈〈n̂dσ C†
k′σα′ Ckσαdσ |d†

σ 〉〉c. (13)

The correlated GFs 〈〈· · ·〉〉c are defined such that they cannot be reduced to lower-order ones
by any way of decoupling. One can find the details of the cluster expansion and the correlation
dynamics in [17]. After writing down the hierarchy of EOM of the usual GFs 〈〈· · ·〉〉, the above
systematic cluster expansions are employed. The hierarchy of EOMs of the usual GFs is then
transformed into that of EOM of the correlated GFs 〈〈· · ·〉〉c. To save space we only present
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here the first two EOMs of the correlated GFs:
(

h̄ω − εdσ − Undσ −
∑

k,α

|Vkσα|2
h̄ω − εkσα

)
〈〈dσ |d†

σ 〉〉 = 1 + U〈〈n̂dσ dσ |d†
σ 〉〉c (14)

[h̄ω − εdσ + U (ndσ − 1)] 〈〈n̂dσ dσ |d†
σ 〉〉c = U (1 − ndσ ) ndσ 〈〈dσ |d†

σ 〉〉
+

∑

k,α

V ∗
kσα〈〈n̂dσ Ckσα |d†

σ 〉〉c +
∑

k,α

V ∗
kσα〈〈d†

σ Ckσαdσ |d†
σ 〉〉c

−
∑

k,α

Vkσα〈〈C†
kσ αdσ dσ |d†

σ 〉〉c. (15)

The EOMs of other higher-order correlated GFs can be easily obtained by using the cluster
expansion and the EOMs of the usual GFs. This hierarchy of correlated GFs itself provides
a uniform and physical reasonable truncation scheme, i.e. truncation with respect to the
order of correlations. The mean-field theory is reached if one assumes 〈〈n̂dσ dσ |d†

σ 〉〉c ≈ 0.
Subsequently, 〈〈n̂dσ Ckσα |d†

σ 〉〉c ≈ 0, 〈〈d†
σ Ckσαdσ |d†

σ 〉〉c ≈ 0, and 〈〈C†
kσ αdσ dσ |d†

σ 〉〉c ≈ 0
leads to the Hubbard-I approximation. The next higher-order truncation is exactly the Lacroix
approximation which neglects the correlated GFs involving two conduction-electron operators,
namely, 〈〈d†

σ CkσαCk′σα′ |d†
σ 〉〉c ≈ 0, 〈〈C†

kσ αdσ Ck′σα′ |d†
σ 〉〉c ≈ 0, and 〈〈C†

kσ αCk′σα′ dσ |d†
σ 〉〉c ≈

0. Although it is essentially equivalent to the usual Tyablikov decoupling adopted by
Lacroix [18, 19], our decoupling scheme, i.e. the correlation truncation scheme, is more
systematic and is applicable for going beyond the Lacroix approximation. To achieve this,
we take into account the three correlated GFs neglected by Lacroix and assume higher-order
correlated GFs, such as the last term in the right-hand side of equation (13), to be zero. A
closed set of EOMs for the correlated GFs is then obtained. After a lengthy but straightforward
calculation, in the strong correlation limit U → ∞, we obtain the d-electron GF beyond the
Lacroix approximation as (the spin indices are omitted)

Gr (ε) = 〈〈dσ |d†
σ 〉〉

= 1 − nd − A(ε) − A2(ε)

nd

ε − εd + i	
[
1 − A2(ε)

nd

]
+ 2 [B(ε) − i	A(ε)] + A(ε)

nd
[B(ε) − i	A(ε)]

, (16)

with

A(ε) = −	

π

∫ D

−D
dε′ f0(ε

′)
[
Gr (ε′)

]∗

ε′ − ε − iη
, (17)

B(ε) = 	

π

∫ D

−D
dε′ f0(ε

′)
ε′ − ε − iη

, (18)

nd = − i

2π

∫ D

−D
dε G<(ε). (19)

In deriving equation (16), there emerge four two-body correlation functions, 〈d†
σ d†

σ Ck′σα′ Ckσα〉,
〈n̂dσ d†

σ Ckσα〉, 〈n̂dσ C†
k′σα′ Ckσ α〉, and 〈d†

σ C†
k′σα′ dσ Ckσα〉. The first two are zero due to the fact

that double occupation is forbidden in the limit of U → 0. 〈n̂dσ C†
k′σα′ Ckσα〉 is related to

〈n̂dσ d†
σ Ckσα〉 by the EOM and the spectral theorem and is zero subsequently. The last one can

be expanded as 〈d†
σ C†

k′σα′ dσ Ckσα〉 = 〈d†
σ Ckσα〉〈C†

k′σα′ dσ 〉 + 〈d†
σ C†

k′σα′ dσ Ckσα〉c. The spin-flip
correlation 〈d†

σ C†
k′σα′ dσ Ckσα〉c is assumed to be zero for simplicity.

Notably, Gr (ε) has a nontrivial dependence on the voltages through the nonequilibrium
distribution function, which captures the nonequilibrium Kondo physics better than the Lacroix
approximation. At equilibrium and zero temperature, A(ε) and B(ε) have singularities at
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the Fermi level, but Gr (ε) varies more smoothly around this point. Equation (16) can be
written as

Gr (EF) = 	

π

[Gr (EF)]∗
(2i	2/π)[Gr (EF)]∗ + 	/π

, (20)

where EF = 0 is the Fermi level. Equation (20) has already been obtained by Lacroix [18, 20].
The solution of this equation is Gr (EF) = (sin θ cos θ)/	 − i(sin2 θ)/	, with an arbitrary
phase θ . Since the solution has the same form of the exact Fermi-liquid relation which obeys the
Friedel sum rule [21, 22], a natural and physical choice is to relate the phase to the occupation
number, i.e. θ = πnd, as the rule reveals. Using the Dyson equation of Gr (ε), equation (19)
when integrated over ε from −∞ to EF gives [20, 21]

θ = π

4
− 1

2
tan−1 εd

	
. (21)

3. Results and discussions

Our computational scheme is as follows. For a given set of parameters (εd, D, 	α) of the device,
we first solve the self-consistent equations (16)–(19) at equilibrium. The self-consistently
calculated occupation number nd determines when the iteration stops. The regularization iη,
introduced to cancel the singularities of A(ε) and B(ε) at EF, is determined such that the final
Im[Gr (EF)] is in agreement with that obtained by equation (21). With this fixed η, we then
solve equations (16)–(19) self-consistently in nonequilibrium by applying voltages to the leads.

Before we present numerical results on the current correlations, some general discussions
are necessary. For a strongly interacting Y-shaped dot in the Kondo limit (εd � −	), it
is known that Gr (ε) consists of approximately two well-separated Lorentzian poles [23] in
equilibrium. One of them is located at εd, and the other one is the Kondo resonance at the
Fermi level EF. The broadening effect of the impurity level on the DOS around EF can be
neglected and the renormalization factor is readily find as R(ε) = 1 in this case. When the dot
is driven out of equilibrium by applying biases to the three leads, the broadening effect is still
weak; however, R(ε) deviates from 1 due to the splitting of the Kondo peak. On the other hand,
if |εd| decreases to be only several times bigger than 	 (of course, still in the Kondo regime),
the broadening effect will become important. The DOS is no longer a Lorentzian around EF,
neither can it be written as a sum of Lorentzian functions [23] due to the interference between
the broadening impurity level and the Kondo resonance. Equation (16) can describe these
effects well. In this regime, R(ε) = 1 holds only around EF even in equilibrium. Figure 1
shows R(ε) in the Kondo limit (i.e. εd is deep below the Fermi level εd � −	) and in the
Kondo regime with εd = −5	 for different biases. Thus, equations (9) and (10) exactly recover
the FDT for the thermal (equilibrium) noise at low temperatures Sαβ |eq = 4kBTGαβ , where T is
the temperature and Gαβ the linear conductance defined as Gαβ ≡ e ∂ Iα/∂Vβ

∣∣
Vβ=0

. This allows
us to have the confidence in the reliability of equation (9) to describe the zero-temperature
correlations. Note that the equilibrium Kondo temperature TK is defined as the half-width of
the Kondo resonance in the DOS. TK is obviously dependent on the bare level εd. However, for
the sake of presentation, we use the same notation TK to denote different Kondo temperatures
in the Kondo regime with εd = −5	 and in the Kondo limit, as seen in figure 1.

What follows are the numerical results on the shot noise and the cross correlations at zero
temperature. The leads 2 and 3 are always symmetrically biased, i.e. V2 = −V3 = V/2. For
simplicity, we also assume equal tunnel couplings (	α = 	/3). In figure 2 we plot the S11 ∼ V1

characteristic for different voltages applied to leads 2 and 3. It indicates that S11 at V1 = 0 is
nonzero with increasing V , implying a divergence of the Fano factor γ11 ≡ S11/(2e|I1|). The

6
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Figure 1. R(ε) for different biases. The leads 2 and 3 are symmetrically biased i.e. V2 = −V3 =
V/2. The renormalization factor is significantly changed by the broadening effect.

Figure 2. The shot noise in lead 1 versus bias voltage V1 for different values of the voltage drop V .

fact that the minimum value of S11 at V1 = 0 turns into a maximum is directly related to the
Kondo physics. Namely, the maximum of the DOS at ε = 0 (proportional to the transmission
coefficient) turns into a minimum due to the voltage-induced splitting of the Kondo peak. This
feature is similar to the corresponding results of [9] obtained by the SBMF approach with
the parameter εd = −6	. We also observe that the broadening effect due to the finite value
of |εd|/	 on the shot noise S11 is significant only for large V1. In this voltage regime, the
lineshapes of figure 2 are different from the results of [9], where S11 drops when V1 becomes
very large as compared to TK and thus indicates the vanishing of the Kondo effect at large
voltages. By contrast, our results imply that the Kondo effect remains at weak coupling when
V1 is large [24]. Nevertheless, we cannot take results for V1 � TK with great confidence, as
mentioned in section 2.

7
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Figure 3. The cross correlations between leads 2 and 3 versus bias voltage V1 for different values
of the voltage drop V .

The feature of the cross correlations between leads 2 and 3 is more interesting, as shown
in figure 3. In the Kondo limit, figure 3(b) shows that S23 at V1 = 0 first decreases and then
increases back with increasing V . The DOS is symmetric around ε = 0, leading to a zero
net current through lead 1 at V1 = 0. S23 depends then on the transmission coefficient T23

through the form T23(1 − T23) [6, 25] because lead 1 at V1 = 0 acts as a voltage probe with
zero impedance. At V = 0, the system is in the unitary limit and linear response regime,
T23 = 1, and S23 vanishes. When V is much larger than the Kondo temperature, T23 is
very small, and S23 vanishes again. Thus we have explained the nonmonotonic dependence
of the cross correlations around V1 = 0 on the voltage between leads 2 and 3 in the Kondo
limit. Due to the broadening effect, figure 3(a) shows that S23 in the Kondo regime with
εd = −5	 is quite different from that in the Kondo limit in the whole range of V1. In this
regime, I1 	= 0 at V1 = 0, resulting from the asymmetric DOS. Consequently, the dependence
of S23 on V1 is rather asymmetric, and the rise of S23 around V1 = 0 with increasing V is
also hindered. From the above observations, it is clear that S23 is more sensitive than S11 to the
broadening effect of the impurity level. Recent studies have revealed the important contribution
of this broadening effect to the Fano resonance around the Fermi level due to the interference
between the Kondo resonance and the broadening impurity level [23]. Therefore, the three-
terminal QD not only provides a direct experimental access [8] to the nonequilibrium Kondo
DOS but also, through the cross-correlation measurements, yields additional information on
electronic correlations in the DOS, which is important for the microscopic picture for the Fano
resonance.

8



J. Phys.: Condens. Matter 19 (2007) 026204 T-F Fang and S-J Wang

Figure 4. The voltage-scaled shot noise in lead 1 versus bias voltage V1 for the beam splitter. Peaks
around |V1| = 2TK are obvious.

The same cross correlations were also presented in [9] with the parameter εd = −6	;
however, the results are quite different from ours both in the lineshapes and scales. Figure 6(a)
of [9] is so asymmetric that one can see nothing about the Kondo physics from it and the
authors do not say which physical effect leads to such a asymmetry. Our results on S23

at εd = −5	 (figure 3(a)) also display asymmetric lineshapes, whereas we reveal that this
asymmetry results from the broadening impurity level which can interfere with the Kondo
resonance, as discussed in the above paragraph. There are two sources for the discrepancies
between figures 2 and 3 of the present paper and the corresponding results of [9]. The first is
due to the different positions of the level εd. The more important source is that our decoupling
scheme differs from the SBMF theory. In the particle picture, the SBMF approximation is
beyond the mean-field approximation and includes some parts of two-body correlations (in the
quasiparticle picture, this approach describes noninteracting quasiparticles). To our knowledge,
the correlation truncation scheme beyond the Lacroix approximation, used in the present paper,
includes more two-body correlations than the SBMF theory, though a systematic investigation
of the relation between the two approaches has not yet been made. The two-body correlations
are expected to be important for current fluctuations in the strongly correlated regime of the
Kondo effect.

Next, we consider the Y-shaped dot acting as a beam splitter. The leads 2 and 3 are
identically biased (V = 0) such that a current is passed from the lead 1 into the leads 2
and 3, with no net current between them. In figure 4, we plot the voltage-scaled shot noise
S11 for the beam splitter. It exhibits two peaks around |V1| = 2TK both in the Kondo regime
with εd = −5	 and in the Kondo limit. The heights of peaks (∼e2/h) and the lineshapes are
consistent with that in a two-terminal QD [6, 25], except for a nonzero residual noise at V1 = 0.
A similar noise peak, also relating to the Kondo effect, was found in mesoscopic diffusive wires
hosting magnetic impurities [26]. Here, we address that the nonzero S11/V1 at V1 = 0 is an
immediate consequence of a beam splitter with three leads. Actually an analytical expression
for this quantity can be deduced from equation (9):

S110 ≡ lim
V1→0

S11

V1
=

{
	1(	2 + 	3)

	2
sin2 θ −

[
2	1(	2 + 	3)

	2

]2

sin4 θ

}
16e2

h
. (22)
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Figure 5. The cross correlator γ23 at V1 = 0 as a function of εd. The dashed line corresponds to a
noninteracting dot. Inset: γ23 versus V1 in the Kondo regime and in the Kondo limit.

Using the present values of εd, we get S110 � 0 for a two-terminal QD with identical couplings
(	3 = 0, 	1 = 	2 = 	/2) and S110 � 0.1 for our beam splitter.

Similarly, the Fano factors γ11 and γ23, defined as γαβ ≡ Sαβ/(2e
√|Iα Iβ |), at V1 = 0 are

readily found as

γ110 ≡ lim
V1→0

γ11 = 1 − 4	1(	2 + 	3)

	2
sin2 θ (23)

γ230 ≡ lim
V1→0

γ23 = −4	1

	2

√
	2	3 sin2 θ. (24)

Because γ110 and γ230 have similar dependence on the impurity level εd, we only plot the cross
correlator in figure 5. γ23 at V1 = 0 is a steplike function of εd, whose minimum value −4/9
is reached in the Kondo limit and maximum 0 in the empty-orbital limit. For comparison, the
corresponding γ23 for a noninteracting dot is also presented, which is a Lorentzian function of
εd. At εd = 0, the cross correlator γ23 for the noninteracting dot is exactly twice that for the
dot in the strong correlation limit (U → ∞). This is because it allows double occupation of
electrons for U = 0, and single occupation for U → ∞. When εd is deep below the Fermi
level, the cross correlator in the interacting case decreases to −4/9 due to the dominating Kondo
effect, while in the noninteracting case γ23 increases to zero because the transmission is very
small. The dependence of γ23 on V1 is only available by numerical calculations; see the inset
of figure 5. We see that γ23 is minimal at V1 = 0 and saturates at large voltages. The valley
around V1 = 0 is insensitive to the broadening effect and is scaled by the Kondo temperature
TK, though TK has different values depending on the bare level εd. Our results for γ23 are in
good agreement with the SBMF results [9]. The agreement indicates that the Fano factor γ23 is
mostly determined by the mean-field effect and its changes are negligible, though S23 changes
significantly, when more two-body correlations are taken into account.

4. Summary

We have studied cross correlations and shot noise in a three-terminal QD with the Kondo effect
dominating. Both of them show a nontrivial dependence on the voltage applied to one lead
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when the Kondo resonance is split by the bias between other two leads. The cross correlations
are more sensitive than the shot noise to the broadening effect of the impurity level and are
always negative, reflecting the fermionic nature of the quasiparticles. When the QD acts
as a beam splitter, the voltage-scaled shot noise, with a distinct residual noise at V1 = 0,
exhibits peaks around the Kondo temperature and the cross correlator shows a valley at V1 = 0.
Both quantities as functions of the scaled voltage V1/TK show a scaling behaviour, which can
give a good estimate of the Kondo temperature. We have also compared our results with the
corresponding SBMF results and the source of discrepancy has been discussed. Experimental
tests of our results are possible, and we hope that the present work will indeed motivate
experimental effort on the current correlations in multiprobe Kondo impurities.
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